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This paper presents finite-difference solutions to the evolution of small-amplitude disturban- 
ces and incompressible fully developed turbulent channel flow. The main objective of the 
paper is to provide a comprehensive comparison between the results obtained using tinite- 
difference and spectral methods. An advantage of finite-difference schemes over the highly 
accurate spectral methods lies in the ease with which they can be applied to complex 
geometries. The finite-difference methods used include a kinetic-energy-conserving type of 
central difference scheme and a high-order-accurate upwind difference scheme. Unlike the 
central difference scheme, the upwind difference scheme was found not to require a kinetic 
energy conservation property to control aliasing error. The dissipative nature of the upwind 
scheme results in a damping of the higher frequency content. As a result very little energy is 
aliased back. The computed data (including first- and second-order statistics) for the turbulent 
channel flow case are found to compare well with experimental data and earlier spectral 
simulations. It appears that the high-order-accurate upwind scheme is a good candidate for 
direct simulations of turbulent flows over complex geometries. 0 1991 Academic PISS, 1nc. 

Almost all of the current applied computational fluid dynamics (CFD) investiga- 
tions using the Navier-Stokes equations require a model for computing turbulent 
stresses. In recent years CFD methods have been used to simulate the flow about 
extremely complicated configurations such as flow over a complete aircraft [ 11, 
unsteady flow through turbomachinery [2], flow through the SSME hot gas 
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manifold [3], and many other equally complicated flows. However, these computa- 
tions rely on turbulence models that were developed using data obtained for simple 
flows. Even the more sophisticated turbulence models such as the k - s model [4], 
which are claimed to be more generally applicable than the simpler models such as 
the Baldwin-Lomax model [S], have not performed to expectations. The general 
experience among researchers has been that the performance of the k -e models 
has in many situations been no better than that obtained from the simpler models. 

In many instances turbulence models have only a second-order effect on the com- 
puted solution, for example, surface pressures for certain simple supersonic external 
flows are computed with error values of less than 1% whereas heat transfer rates 
are computed with an error of about 15%. However, there are just as many situa- 
tions where the turbulence model could have first-order effects on the solution, for 
example: (1) separated internal flows, where the calculated mass flow rate through 
the system is affected by the extent of the region of separation which is, in turn, 
dependent on the turbulence models; (2) transitional flows; and (3) flows at high 
angles of attack [6]. Whether one attempts to predict heat transfer rates more 
accurately or only reasonable surface pressure distributions, the major stumbling 
block is the predictive capability of the turbulence model. 

In spite of the tremendous effort that has been put into developing turbulence 
models, progress in this area has been limited. The shortcoming of turbulence 
models used in most Reynolds-averaged Navier-Stokes computations is that they 
are designed to model all scales of turbulent structures. However, the larger scales 
are highly dependent on the particular geometry and flow conditions of interest; it 
is therefore difficult if not impossible to develop a universal turbulence model that 
accounts for all the scales of motion. A good compromise is to model only the 
smaller scales of motion. These scales, to a large extent, are the same in all 
flows and their structure is mainly determined by the energy they are required to 
dissipate. This technique is referred to as large eddy simulation (LES) because the 
larger eddies are calculated and the smaller ones are modeled (see, for example, 
Ref. [7]). In contrast, a direct simulation technique is one in which the grids used 
are sufliciently fine to resolve all scales of motion. The computing requirements for 
such an approach are excessively high for even moderate Reynolds numbers. 
However, direct simulations can be invaluable in guiding LES techniques (in the 
modeling of the smaller eddies) and in obtaining a fundamental understanding of 
the nature of turbulence [S]. 

To date the most successful direct simulations have been performed with spectral 
methods because of the very high accuracies of these methods 181. However, 
spectral methods are difficult to use for complex geometries. They are also more 
complicated than finite-difference techniques and are not the prevailing methods in 
existing application codes. On the other hand, finite-difference methods are simple 
to implement and are also the most commonly used methods in current application 
codes. The major shortcoming of currently used finite-difference methods is that 
their accuracy levels are inadequate. The spectral element method attempts to 
retain the high accuracy of spectral methods and the geometric flexibility of finite- 
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difference and finite-element methods [9]. However, to the author’s best knowledge 
this method has not yet been applied to turbulence simulations. 

Earlier work in using finite-difference schemes in computing turbulent flow 
includes that of Deardorff [lo], where fully developed, incompressible, turbulent 
channel flow at very large Reynolds numbers is calculated using an LES approach. 
Deardorff [lo] uses the staggered grid approach of Harlow and Welch [ 111, the 
“leapfrog” method for time differencing, and central differences for the convective 
terms. A total of 6720 grid points, equally spaced in all directions, are used to com- 
pute the results that are presented. The computed results are found to be in rough 
agreement with the experimental results of Laufer [12]. The differences between 
theory and experiment can be attributed to the extremely coarse grid used, the 
differences in Reynolds number, and deficiencies in the modeling of the subgrid 
scale (SGS) Reynolds stresses. Schumann [13] presents results for incompressible 
fluid flow in plane channels and concentric annuli using a LES approach and a 
finite-difference integration scheme. The finite-difference scheme for the gross scale 
velocities is essentially the same as that used in Ref. [ 10 J. Both of these schemes are 
momentum- and energy-conserving. The results of Ref. [13] are obtained using a 
different SGS model, higher grid resolution, and larger values of the channel 
streamwise and spanwise lengths (as compared to Ref. [lo]). The computed mean 
velocity profile and some first-order turbulence statistics are found to be in good 
agreement with the experimental data of Refs. [12, 141. Schumann [13] makes the 
important observation that while the finite-difference scheme is energy conserving, 
the actual energy transfer toward larger wave numbers in the simulation of the 
gross scales is too large. 

Herring et al. [15] present computed results for the decay of two-dimensional, 
homogeneous, isotropic, incompressible turbulence. The calculations are performed 
using a vorticity and stream function approach and both spectral and finite-dif- 
ference integration methods. Although this technique is quite different from the one 
that is used in the present study (the governing equations are written using the 
primitive variables), two important conclusions given in Ref. [ 151 do pertain to the 
current situation: (1) spectral methods signal their accuracy or inaccurary through 
an inadequately resolved enstrophy dissipation spectrum whereas finite-difference 
schemes do not; and (2) spectral methods require roughly half as much resolution 
as finite-difference schemes in each spatial direction (the finite-difference scheme 
used in Ref. [15] is second-order accurate) to yield solutions of comparable 
accuracy. 

In the past, efforts towards developing higher-order accurate finite-difference 
methods were frustrated because of the lack of robustness of the new schemes. Even 
the lower order methods required a few arbitrary smoothing parameters or an 
energy conservation principle (which is difficult to realize on general grids) to stabi- 
lize them. However, modern upwind schemes are found to be extremely robust even 
when they are made high-order accurate (Ref. [16]). For this reason they hold 
some promise of being able to simulate turbulent flows over complex geometries 
with general boundary conditions. The purpose of this study is to evaluate the 
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performance of such high-order-accurate upwind methods and other finite-difference 
schemes in simulating turbulent flow and accurately predicting the higher-order 
statistics of such flows. 

In the following section, a spatially high-order-accurate, upwind-biased linite- 
difference scheme is developed for the incompressible Navier-Stokes equations in 
three dimensions. The scheme uses a staggered grid as in Ref. [ 111 and is a variant 
of the partially implicit, fractional-step approach of Ref. [ 171. The accuracy of the 
integration method is first tested by computing the evolution of small-amplitude 
disturbances in channel flow. The scheme is then used to compute fully developed 
channel flow at a Reynolds number of 180 (based on wall shear velocity and chan- 
nel half-width). The results of these investigations are compared with experimental 
data and the spectral calculations of Ref. [S]. The implicit smoothing of the 
upwind-biased scheme is found to control aliasing errors without unduly affecting 
the accuracy of the solution for reasonable grid sizes. 

Results are also presented for a second-order-accurate central difference scheme 
of the type developed in Ref. [l 11. The inadequacy of the second-order accuracy of 
the scheme (for the grid size chosen) is demonstrated using the test cases mentioned 
above. An additional limitation of this scheme is that in order to be stable it must 
be kinetic-energy conserving in nature. Deviations in the differencing technique that 
retained second-order accuracy but not the energy conservation principle resulted 
in unstable solutions. 

THE NUMERICAL METHOD 

The integration method used in this study is based on a partially implicit, 
fractional step method developed in Ref. [17]. The method of Ref. [ 171 is a variant 
of the fractional step method of Ref. [ 181. In this section, the method of Ref. [17] 
is briefly outlined and then the high-order accurate upwind-biased method is 
presented. 

The conservative form of the continuity and momentum equations for incom- 
pressible flow are given by 

and 

aui a ap I a a at+ax.iuj = --+---u, 
J ax, Re ax,ax, (2) 

where ui, u2, u3 are velocities in the x,, x2, x3 directions, respectively, p is the 
pressure, and Re is the Reynolds number. The dependent variables in Eqs. (1) and 
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(2) have been nondimensionalized by a characteristic velocity and length scale. The 
fractional step method of Ref. [ 171 is given by 

(&+u;) (3) 

ul+’ , - z-ii 
At 

= -G(&‘+‘) 

with 

D(u;+‘)=O, (5) 

where Hi represents the convective terms, G and D represent discrete gradient and 
divergence operators, respectively, and S*/Sxf represent finite-difference operators 
for the second derivatives. The variable 4 is related to the pressure and is given by 

fJ-gyfp=p. (6) 

The solution procedure consists of the following steps: (1) calculate intermediate 
velocities z& using Eq. (3); (2) calculate the pressure related variable 4 by solving 
Eq. (4) (the unknown velocities uy+’ in Eq. (4) can be eliminated by taking the 
divergence of both sides of this equation and using Eq. (5)); and (3) calculate the 
velocities at the new time level (ul+ ‘) using Eq. (4). The scheme outlined in 
Eqs. (3)-(5) uses a second-order accurate explicit, Adams-Bashforth scheme for the 
convective terms and the second-order accurate, implicit, Crank-Nicolson scheme 
for the viscous terms. An approximate factorization technique is used to solve 
Eq. (3). The spatial derivatives in Eqs. (3)-(5) are evaluated using central differen- 
ces on a staggered grid. As observed in Ref. [17], the use of staggered grids 
eliminates the need for ad hoc pressure boundary conditions. The method used in 
this study differs from that of Ref. [17] in several ways. The modifications to the 
scheme of Ref. [ 171 have been made to meet specific goals and are outlined below. 

Aliasing Error and Upwind Differences 

One of the problems encountered in direct simulations of turbulent flow is the 
control of aliasing error. Use of schemes which do not have a mechanism of 
controlling aliasing error can result in the decay of the turbulence in a given flow 
field or an unbounded growth of the solution. One approach to overcoming 
this problem is to use energy conserving schemes. The method of Ref. [17], 
approximating the convective derivatives as in Ref. [ 111, conserves the total kinetic 
energy in the grid (in the absence of the viscous terms) and therefore can be used 
for direct simulations of turbulence. However, while energy is conserved by this 
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scheme, it is not clear how this energy is redistributed. A second method of 
controlling aliasing error is to extract and discard at each time step that energy 
which would otherwise be aliased back. However, current procedures that perform 
this operation rely on series representations of the dependent variables (such as 
Fourier representations), and it is not clear how these procedures can be extended 
to curvilinear grids. A more detailed discussion of the role of aliasing error in fluid 
dynamical calculations and techniques for the removal of aliasing error can be 
found in Ref. [19]. 

For the reasons outlined above, the present method uses an upwind differencing 
technique for the convective terms in Eq. (3). The leading truncation error term of 
some upwind differences is dissipative in nature and thus damps the higher 
frequency content. Since only the energy in the upper portion of the spectrum is 
aliased back, a dissipation of the energy content of this part of the spectrum (due 
to the natural smoothing of the upwind scheme) results in significant control of 
aliasing errors. The main disadvantage is that the useful information in the upper 
portion of the spectrum is also lost in the process. However, this problem can be 
overcome with the use of additional grid points. The upwind technique (like other 
finite-difference techniques) also has the advantage that it can be used for curvilinear 
grids. For this reason the convective terms in Eq. (3) are evaluated using upwind 
differences (as before, the viscous terms are approximated using central differences). 

First-order accurate upwind differences are extremely dissipative in nature and 
are hence of little use in practical applications. Second-order accurate upwind 
methods are considerably less dissipative and are widely used in application codes. 
However, even second-order accuracy can be insufficient for direct simulations of 
turbulence (this will be demonstrated in a later section). In this study we use a ftfth- 
order accurate difference scheme for the convective terms. However, first one par- 
ticular aspect of upwind differences will be considered, that is, the size of the stencil 
(the number of consecutive grid points) required to achieve a certain order of 
accuracy. It can be shown that 2n + 1 grid points are required to produce nth-order 
accurate upwind differences (this estimate takes into account that both forward and 
backward differences of a given quantity may be required at any grid point). This 
requirement translates into a 1 l-point stencil in order to produce fifth-order 
accurate upwind differences. The problem with such large stencils is that many grid 
points near the computational boundaries can no longer be treated using the finite 
differences used in the interior; therefore they will require special treatment. Hence, 
finite differences are needed that are as compact as possible subject to the constraint 
that they have the desirable natural smoothing that controls aliasing errors. 

Upwind-biased differences require a much smaller stencil than fully upwind 
differences to obtain a given order of accuracy. In addition, the upwind-biased 
differences used in this study have the desired natural dissipation to control abasing 
error. Upwind-biased differences achieve a higher order of accuracy for a given 
stencil size by using grid points on either side of the point in question but with 
more points in the direction in which the difference is to be biased. For example, 
a decision to use at most five grid points (two on either side of the point at which 
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the derivative is to be calculated) would result in a second-order accurate fully 
upwind (backward) difference for a first derivative 

3Uj -4Uj- I+ Uj-2 
2Ax ’ 

whereas the same derivative could be computed to third-order accuracy using 
upwind-biased differences as follows: 

2uj+,+3uj-6ujp,+uj_, 
6Ax 

The extra accuracy is obtained because of the additional data point used in the 
approximation. The use of the entire stencil would result in a fourth-order-accurate 
central difference without natural dissipation. The high-order accurate method of 
this study uses a seven-point stencil and fifth-order accurate upwind-biased 
differences. 

Time-Stepping Procedure 

As mentioned earlier, the method of Ref. [17] uses a second-order accurate, 
explicit, Adams-Bashforth method for the convective terms. A simple Fourier 
stability analysis of this method as applied to the one-dimensional linear convection 
equation 

g+cg=o (7) 

shows that it is unstable for all CFL numbers. However, the instability is very weak 
and the method usually works for CFL numbers less than 1.0 in the presence of a 
viscous term on the right-hand side of Eq. (7). The Runge-Kutta methods seem 
more suitable for the convective terms because of their stability. The low-storage 
Runge-Kutta methods of Ref. [20] have the additional advantage that they require 
the minimum amount of computer run-time memory for this class of schemes. In 
this study we use a three-step hybrid Runge-Kutta/Crank-Nicholson scheme 
developed by Spalart (private communication) that is a variant of the three-step, 
low-storage, Runge-Kutta method developed in Ref. [20]. The method of Spalart 
uses an explicit Runge-Kutta method for the convective terms and an implicit 
Crank-Nicholson method for the viscous terms of Eq. (3). The method is second- 
order accurate in time for the viscous terms and third-order accurate in time for the 
convective terms, the overall accuracy being second order in time. 

Spatial Order of Accuracy 

Another important issue is the spatial order of accuracy of finite-difference 
methods on nonuniform grids. The accuracy of most finite-difference methods is 
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defined for equispaced grids. These finite-difference methods are then used on 
stretched meshes or even curvilinear meshes under the assumption that the 
accuracy of the method does not suffer appreciably in the process. In reality, the 
accuracy could drop. A simple example would be the approximation of the term 
au/ax using central differences and a three-point stencil. On an equispaced mesh 
this could be performed as follows: 

au _ “i+ I - *,- I + o(Ax)2, 
ax - 2Ax (8) 

The above approximation is second-order accurate. A commonly used extension of 
this technique on a stretched mesh involves defining the transformation 

5 =4(x) 

and determining au/ax from 

au au at -=-- 
ax at ax’ 

where the terms au/at and at/ax are approximated as 

au u,+l-“j-l 

g= 24t 

at 2At; -= 
ax Xj+l-X,-l' 

(9) 

(10) 

(11) 

This approach leads to a second-order accurate approximation to au/ax only if the 
transformation defined in Eq. (9) is sufficiently smooth (in this case, a continuous 
second derivative). For grids where the spacing does not vary smoothly, second- 
order accuracy can. be obtained only from an approximation that takes into 
account the stretching of the mesh, that is, 

au uj+,+(&i)~j-~%j-, 
ax' a(a+ l)(Xj -xi-,) ’ (12) 

where 

U=(Xj+l-Xj)/(Xj-Xj-1). 

Since the ultimate objective of the current effort is to develop a methodology that 
can be used for direct simulations of turbulent flow over general geometries (where 
generating grids that are sufliciently smooth is difficult), and, since accurate direct 
simulations of turbulence requires high-order accuracy (this will be demonstrated in 
the results section of this paper), difference formulas of the type given in Eq. (12) 
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are used in this study. The convective and viscous terms in the momentum 
equations, the divergence operator in the continuity equation, and the gradient of 
the pressure in the momentum equation are all obtained by using high-order 
accurate finite-differences that take into account the stretching of the mesh. 

A Note on the Conservation of Fluxes in a Discrete Sense 

Reference [17] uses the conservative form of the governing equations and a 
finite-difference scheme that conserves mass and momentum in a discrete sense. To 
illustrate the conservation property we consider the inviscid Burgers equation in 
one spatial dimension: 

(13) 

and a fully implicit finite-difference approximation to it 

un+l I - u; +f;=;,2 -f;‘;,2 = o 
At Ax ’ (14) 

where the J+ ,,* terms represent numerical fluxes consistent with the physical flux 
f, and, for a central difference scheme are given by 

The scheme as given by Eqs. (14) and (15) is second-order accurate in space 
on an equispaced grid and satisfies the global conservation property because the 
numerical fluxes telescope; that is, given a set of consecutive grid points r . . . s, the 
sum 

s=~~;$(u:+‘-u;)= -kfs(f;::,*-p;l:,2) 
k=r 

reduces to 

s=P:$,-3:::,,. 

Clearly, a direct extension of this approach to a stretched mesh with the numerical 
fluxes defined as in Eq. (15) but with the finite-difference scheme redefined as 

U 
n+l 

- u7 3;$ - j!f;,2 

At + 0.5(Xj, 1 -Xj)+0.5(XjwXj-.]) 
=o (18) 
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yields a globally conservative scheme that is second-order accurate on stretched 
grids when the stretching is sufficiently smooth. Modification of this scheme to 
make it higher-order accurate on generalized grids without losing the global conser- 
vation property is not straightforward. In this study we defer this issue and use the 
nonconservative form of the equations for which high order accuracy can be 
achieved in a relatively straightforward manner. Since the flows under consideration 
do not contain shocks and other flow discontinuities, the nonconservative form of 
the equations should perform as well as the conservative form of the equations. 
However, the issue of obtaining high order accuracy subject to the constraint of 
conserving fluxes globally is one that will have to be addressed before direct or 
large eddy simulations of flows that contain discontinuities can be performed. 

The Current Method 

Having discussed the modifications made to the fractional step scheme of 
Ref. [17] in obtaining the scheme used in the present study and the reasons for 
these modifications, we now describe the high-order accurate, partially implicit, 
upwind-biased, fractional step scheme. The nonconservative form of the continuity 
and momentum equations for incompressible flow are given by 

aui 
x,‘* 

and 
au; a ap i a a ~+U,p= --+---uj. 

J ax, Re axj ax, 

The three-step Runge-Kutta scheme to solve Eqs. (19) and (20) is given by 

Step 1. 

u4=“l+At ( YIHi(u:)+z ( b2 8x2+2+2 , z2 6”:,) ” a> (Uj +Ui) 
fi. -uUa 
I= -G(y,q+) 

At 

D( iii) = 0, 

Step 2. 

(19) 

(20) 

(214 

;. -uQ 
II= -G(~,$+id) At 

II(&) = 0, 
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Step 3. 

,;+I -u;. 
At = - W,$+ L& 

D(u;+‘)=o, 

where 

Lx, = 4/15 

cc* = l/l5 

cc3 = l/6 

y, = s/15 

y2 = 5112 

Y3 = 314 

[, = -17160 

iz = -5112. 

(22) 

G and D are discrete gradient and divergence operators as before, and Hi represents 
the nonconservative form of the convective terms. Each of three steps outlined 
above closely resembles the fractional step method described in Eqs. (3)-(5). The 
predictor step in Eqs. (21a), (21b), and (21~) is solved using an approximate fac- 
torization method. For the channel flow calculations presented later in this study, 
the mean pressure gradient was added to the predictor step of Eqs. (21a), (21b), 
and (21~). The Poisson equation resulting from the corrector steps (in conjunction 
with the divergence-free property) is solved using transform methods. This 
approach is discussed in detail in Ref. [ 171 and therefore will not be discussed here. 

The convective terms H, are approximated using high-order accurate upwind- 
biased differences; for example, the first term in the u, momentum equation is 
evaluated as 

if u,>O and 
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if u1 ~0, on a grid that is equispaced in the x, direction. The remaining convective 
terms are evaluated in a similar manner. The viscous terms are evaluated using cen- 
tral differences. For stretched meshes (the type used in the wall-to-wall direction for 
channel flow), the coefficients in the difference formulae are evaluated numerically 
in the code using Lagrange polynomials so as to retain high-order accuracy even 
on grids where the underlying transformation is not sufficiently smooth (obtaining 
explicit formulas for these coefficients becomes a laborious task for anything more 
than second-order accurate differences). In general, different stencil sizes will have 
to be used to obtain the same order of accuracy for the first and second derivatives 
(convective and viscous terms) in the integration method. In the present study a 
maximum of seven consecutive grid points (three on either side of the point in 
question) are used in the evaluation of the convective and viscous derivatives. With 
a seven-point stencil, the convective and viscous terms are approximated to lifth- 
and sixth-order accuracy, respectively. 

Figure 1 shows the two-dimensional counterpart of the three-dimensional 
staggered grid that was used to obtain the results of this study. The velocities U, 
and u2 are defined at the midpoints of the vertical and horizontal sides of each cell, 
respectively, and the pressure is defined at the midpoint of each cell. The second- 
order accurate divergence operator of Ref. [ 171 is defined at the midpoints of the 
cells and is given by 

(24) 

The second-order accurate gradient operator of Ref. [17] is defined at the 
midpoints of the cell sides and is given by 

(q$,);+ ,,2,, = #i+ 'b:,- hj 

1, 

(d.q)i, j+ I/2 = “““b, I’*. 
2 

(25) 

This combination of the divergence and gradient operators results in a three-point 
stencil in each spatial direction for the Laplacian of 4 which arises during the 
process of obtaining 4. In the present method, the divergence operator is once again 
defined at the cell centers but the spatial derivatives of this operator are defined 
using a stencil size of four. Thus, on an equispaced grid, this operator takes the 
form 

Di,i=C-(U,)i+3,2,j+27(ul)i+l/2,j 

-27(~,)~- 1j2,i + (UI)r-3/2,jll(24dXI) 

+ C-(u2h,j+3,2 +27(u2)i,,+1/2 

- 27(u2)i, j- 112 + (uZ)i, j- 3/21/(24dx2). t-26) 
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u2 (i,j+%) 

u, (i-X, j) X 0 ): u1 (i+%, j) 

v+ (i.j) 

9 (i. j-X) 

FIG. 1. Staggered grid showing physical locations at which the dependent variables are defined. 

The Lagrange polynomial method is used to obtain the coefficients of the 
divergence operator for stretched meshes. The gradient operator is detined in a 
similar manner using four grid points in each direction. Consequently, the 
Laplacian of 4 is defined on a stencil of seven grid points in each spatial direction 
(consistent with the self-imposed constraint mentioned earlier). With the four-point 
stencils mentioned above, it can be shown that the divergence and gradient 
operators are approximated to fourth-order accuracy on sufftciently smooth grids 
and to third-order accuracy otherwise. 

As shown in Fig. 1, the components of the velocity are defined at different physi- 
cal locations. Consequently the ur, u2, and u3 momentum equations are integrated 
at the (i + 1, j, k), (i, j + f, k), and (i, j, k + i) locations, respectively. Considering 
the uI momentum equation, we see that the convective terms of this equation 
require the u2 and u3 velocity components to be defined at the (i + 4, j, k) locations. 
A linear interpolation procedure (second-order accurate) is used in Ref. [ 171 to 
obtain these velocity components. The method used in this study uses a cubic 
interpolation technique (fourth-order accurate). 

Whereas the integration scheme is high-order accurate at the interior grid points, 
the overall accuracy of the scheme is reduced because of the manner in which the 
boundary conditions are implemented and the unavailability of large stencils near 
boundaries. The conventional ways of treating boundary and near-boundary grid 
points are usually consistent with the second-order accuracy of many of the 
schemes in current use. When these conventional ways are used with the high-order 
scheme developed in this study, the overall accuracy of the scheme is reduced. 
However, results thus obtained appear far superior to those obtained with conven- 
tional second-order schemes (in spite of the drop in overall accuracy). No attempt 
has been made in this study to improve the accuracy of the boundary conditions 
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used. Grid points that are next to the boundary are treated using either three-point 
central differences or a third-order accurate upwind-biased scheme, depending on 
the size of the stencil available. 

To describe the wall boundary procedure in greater detail we consider the point 
(i,j-i)inFig.l as a point on a wall boundary. In order to simplify the description 
of the boundary procedure we assume an equispaced grid. The divergence operator 
for the cell (i, j) is taken to be 

4, = [-(u,),+~,~,, +27h)j+liz.i 

- 27(~,),- l12,, + ~~~~~~~~~~~~~~~~~~~~ 
+ C(d,,+ l/2 - t"2)i,fp l~211(dx2) (27) 

which is fourth-order accurate in x, and second-order accurate in x2. The x, 
component of the gradient operator is computed using the fourth-order accurate 
finite difference given as 

(4.x, )i+ l/Z,j = 
-4 r+2,J +27~i+l,j-27~i,j+~i--1,J 

24Ax, 
(28) 

and the x2 component of the gradient operator is computed using the following 
second-order accurate finite-difference 

The corrector step of Eq. (21a) for the points (i- f,j), (i- i,j), (i+ $,j), 
(i + t, j), and (i, j + $) can be written as 

(11,)i-3/2,j-(u~)i-3/2,J=_y1(~. ),- 

At x, I 312,~ 

(&Ii- 1/2,J - Cut;),- 112.j 

At 
= -Yl(4x,)i- l/Z,j 

(iil)i+1/2,j-(U';)i+I/2,J= -yl(,$ 

At 
X, It 1/2,J 

), 

(iil)i+3/2,j-(u11),+3/2.j= -yl(# 

At XI 1+3/2.j 
), 

tfi2)i,i+ l/2 - (4)i,j+ 112 = -y,(~,,)i j+ ,,2, 

At 

(30) 

whereas the corrector step for the point (i, j- f) is given by 

tii2)i,j- 1/2=O. (31) 
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Using the divergence operator defined in Eq. (27), Eqs. (30) and (31) can be 
combined to yield (after making use of the zero divergence condition) 

C-("4)i+3j2,j + 27w+ l/Z,j -27(u’;)ip II2.j + (“P)i-3/2,j1/(24dx1) 

+ Ct”‘;)i.,+ 1/21/tdx2) 

=YI AfC[:-(4.rj)i+3,2,.j +27(4.~,)i+l/2,~ 

- 27k~ I/2, j + (~.~,)i-3,2,jl/(24dx1) + C(d.q)i,j+ 1~21/W2)1. (32) 

Substituting Eqs. (28) and (29) for the gradient operators into Eq. (32), we obtain 
the difference equation for 4 at the cell (i, j). This method of implementing the 
surface no-slip boundary condition does not require an ad hoc pressure boundary 
condition. Additional details regarding this boundary condition can be found in 
Ref. [17]. 

The predictor step of Eq. (21a) requires the evaluation of the viscous and inviscid 
terms. Consider for example the term z42(z42)x2 of the u2 momentum equation at the 
point (i, j + 4). A seven-point stencil of the type used in Eq. (23) cannot be 
employed at (i, j+ $) because of the proximity of this point to the wall. Hence 
lower-order accurate finite-differences that require smaller stencils are used in this 
evaluation as 

UZ(%L* = (UZ)i,.i+ l/2 
t”2)i,j+ 312 - t”2)i, j- l/2 

2Ax, > 
if u2 > 0; 

U2(U2L* = t”2)i,j+ l/2 
-(~2)i,j+~/2+6(~2)i,~+~/2-3(~2)i,j+1/2-2(~2)~,j-1/2 

6Ax, > (33) 

if u2 < 0. A similar strategy is used for the other derivatives in the x2 direction that 
are required in the predictor step of Eq. (21a) and also Eqs. (21b) and (21~). 

The periodicity boundary conditions in the streamwise and spanwise directions 
for the channel flow calculations presented here are straightforward to implement 
and therefore will not be discussed. 

The three-step Runge-Kutta/Crank-Nicholson time-stepping procedure has a 
stability limit of CFL number < fi for the inviscid part and is A-stable for the 
viscous part. However, this is true only when central differences are employed in 
computing the convective terms. The maximum time step for stability is lowered 
when upwind-biased differences are used to compute the convective terms. A simple 
Fourier stability analysis of the high-order upwind-biased scheme as applied to the 
one-dimensional linear convection equation (7) indicates a stability limit of CFL 
number c 1.43. However, the scheme remains A-stable for the viscous part. 
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RESULTS 

This section presents results obtained with the high-order accurate upwind 
scheme discussed earlier. Two test cases have been used to evaluate the accuracy 
and robustness of this method. These test cases have been chosen based on the 
availability of results from linear theory, experimental data, and data from previous 
numerical simulations (spectral method simulations). The test cases are described 
below. 

The first test case consists of calculating the evolution of small-amplitude distur- 
bances in channel flow. In this study the disturbance is taken to be an eigensolution 
of the Orr-Sommerfeld equation. The advantage of using this problem as a test case 
is that it has known solutions from linear theory. The flow field is initialized as 

24(x, y, I) = 1 - y* + &ii 

u(x, y, t) = EUI, 
(34) 

where ii, v” represent an eigensolution (wavenumber of unity) and E 4 1 (0.0001 in 
this study). The Reynolds number chosen for this calculation Eq. (20) is Re = 7500 
(based on mean centerline velocity). The energy associated with the perturbation 
quantities ii and C is defined as 

E(r) = s’, 1:X (ii* + 6’) dx dy. (35) 

The energy in the channel E(t) grows exponentially in time as e2”, and for the 
Reynolds number and wavenumber chosen the value of c is 0.002235. Additional 
details regarding this test case can be found in Ref. [21]. In this study the quantity 
E(t)/E(O) is monitored to determine the adequacy of the accuracy of various 
schemes. 

The second test case is a simulation of fully developed turbulent channel flow. 
The Reynolds number based on the wall shear velocity (u,) is defined by 

Re, = @, 
V 

where 6 is the channel half-width and v is the kinematic viscosity of the fluid. The 
Reynolds number used for this calculation (Re,) is 180 and is identical to that used 
in Ref. [S]. The corresponding Reynolds number based on the centerline velocity 
and channel half-width is 3300. The streamwise and spanwise dimensions of the 
channel are 47~8 and 27~5, respectively. The adequacy of these channel dimensions 
has already been demonstrated in Ref. [8]. The flow field in this case is initialized 
as 

u(x, y, z, t) = 1 - y2 + &ii 

0(x, y, 2, t) = EC 

w(x, y, Z, r) = E@, 

(36) 
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where ii, 17, and 3 are obtained from a random number generator (the random 
numbers are scaled to vary between - 1 and 1) and E is of the order of 0.1. The 
governing equations are then integrated in time until the flow field reaches 
statistical equilibrium. 

The grid used in both cases is equispaced in the streamwise and spanwise direc- 
tions and stretched in the normal direction (wall-to-wall direction). The stretching 
in the normal direction is based on a geometric progression. Several grid sizes have 
been used in testing the upwind method and these will be mentioned at the 
appropriate places in the text. For the sake of brevity, the nonconservative, high- 
order-accurate scheme described in Eqs. (21) and (22), in which central differences 
are used to evaluate the viscous terms, upwind biased differences are used for the 
inviscid terms, and high-order representations are used for the divergence and 
gradient operators (and also high-order interpolation) will be referred to as scheme 
A in the remainder of this paper. 

Evolution of Small-Amplitude Disturbances 

Figure 2 shows the time variation of the perturbation energy in the channel 
obtained with scheme A and two different grid sizes; the inviscid terms are 
approximated using upwind-biased differences of third- and fifth-order accuracy. 
Unlike central difference schemes, all the upwind-biased differences used in this 
study have leading truncation error terms that are dissipative in nature. Curve 1 
shows the energy variation obtained on a (16 x 65) grid with the inviscid terms 
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- LINEAR 

0 125 250 375 500 

FIG. 2. Energy growth rates for upwind-difference schemes. 
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evaluated using third-order accurate upwind-biased differences. This energy curve is 
much lower than the exact one; that is, the calculated energy growth rate is much 
lower than the exact value. The dissipation has an overwhelming effect on the 
growth rate of the energy. Curve 2 was obtained with the same scheme but a grid 
size of (32 x 65). The agreement with the exact results is much better although the 
difference between the two is still noticeable. Curve 3 shows results obtained on a 
(16 x 65) grid with the inviscid terms evaluated using fifth-order accurate upwind- 
biased differences. This curve is almost identical to curve 2, thus indicating that the 
magnitude of the leading truncation error term in the two cases is approximately 
the same. Curve 4 shows results obtained with the fifth-order version of scheme A 
but with a grid size of (32 x 65). Curve 4 is almost identical to the exact curve. 

The preceding calculations with the upwind-biased schemes indicate that (a) 
high-order accurate upwind schemes can yield accurate estimates of the evolution 
of flow instabilities, and (b) they may have the potential of accurately simulating 
turbulent flow. However, a minimum number of grid points will be required in 
order to obtain accurate solutions, and this minimum will depend on the order of 
accuracy of the scheme and the parameters governing the flow. While this informa- 
tion is common knowledge among computational fluid dynamicists, the results 
shown in Fig. 2 quantify the effects of truncation error on the evolution of small- 
amplitude disturbances. Results for this test case using central difference schemes 
can be found in the Appendix. 

Coarse-Grid, Upwind-Difference Solutions to Turbulent Channel Flow 

The following results were obtained using upwind-biased differences for the 
inviscid terms (scheme A with fifth-order accurate finite differences) on a 
(64 x 65 x 64) mesh. As discussed earlier, the dissipative nature of the truncation 
error of such differences controls the aliasing error problem by dissipating the 
energy content at the higher frequencies. The flow was initialized as in Eq. (36). 
The computations were initially carried out for approximately 20 nondimensional 
units of time (tu,/6, where U, is the wall shear velocity) upon which statistical 
equilibrium was reached. The results were then time-averaged over a subsequent 
period of 23 nondimensional units of time. 

The mean velocity distribution nondimensionalized by the wall shear velocity is 
shown in Fig. 3. The symbols represent the experimental data of Ref. [22] obtained 
at a Reynolds number of 142 (Re,). The experimental data has been resealed 
as in Ref. [S]. The dashed line represents the law of the wall and the log law 
U+ =2.5 In(y+)+5.5. The agreement with experiment, the law of the wall, and 
the log law is good. 

The turbulence intensities normalized by the wall shear velocity are shown in 
wall coordinates in Fig. 4. The symbols in this figure are the experimental data of 
Ref. [23] for a Reynolds number (Re,) of 194. The experimental data have been 
resealed as in Ref. [S]. The computed streamwise component urmS is in excess of the 
experimental data and the computed peak is slightly to the right of the experimen- 
tal peak. The u,,,,~ and w,,, profiles are consistently lower than the experimental 
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FIG. 3. Mean velocity profiles normalized by wall shear velocity (scheme A; coarse grid). 
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FIG. 4. Root-mean-square velocity fluctuations normalized by the wall shear velocity (wall 
coordinates, scheme A; coarse grid). 
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data. The possibility of error in the experimental technique in measuring I’,,,,~ 
(resulting in larger measured values of this quantity), is discussed in Ref. [S] and 
will not be repeated here. The more recent experimental data of Ref. [24] shows 
a,,, data that are lower than those of Ref. [23]. These data are presented later in 
the paper in conjunction with the fine-grid computational data. 

The turbulence intensities normalized by the local mean streamwise velocity are 
shown in Fig. 5. The symbols represent the experimental data of Refs. [23, 251. As 
pointed out in Ref. [8], the limiting values of these quantities at the wall approach 
the vorticity fluctuation values normalized by the mean velocity gradient at the wall 
(a comparison will be made later in the paper). The comparison between the 
experimental and computational data is approximately of the same quality as that 
obtained in the spectral simulation of Ref. [S]. The limiting value of u,,, at the wall 
is about 0.36, which is the same as that reported in Ref. [S]. The normal and 
spanwise components of intensity are slightly lower than those reported in Ref. 183. 

Vorticity fluctuations normalized by the mean shear at the wall (w,v/(u,)~) in 
wall coordinates are shown in Fig. 6 along with the spectral results of Ref. [8] 
(obtained using a 192 x 129 x 160 grid). Vorticity, for data obtained using 
scheme A, was calculated using a sixth-order accurate central difference on a seven- 
point stencil. Small scale motions contribute significantly to vorticity and, therefore, 
computing vorticity fluctuations accurately constitutes an exacting test of the 
computational method. The finite-difference results agree qualitatively with the 
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FIG. 5. Root-mean-square velocity fluctuations normalized by the local mean velocity (wall 
coordinates, scheme A; coarse grid). 
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FIG. 6. Root-mean-square vorticity fluctuations normalized by the mean shear (wall coordinates, 
scheme A; coarse grid). 
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spectral results of Ref. [S]. All three components are seen to be lower than their 
spectral counterparts. This observation is consistent with the fact that scheme A is 
dissipative in nature. 

Figure 7 shows skewness factors for the velocity fluctuations in global coordinates 
obtained in the present calculation and those reported in Ref. [S]. The skewness 
factors are defined as 

S( u’) = (u1)3/(03i2 

S( u’ ) = fl/qipy2 

S( w’) = fl/@7jq3’2. 

The two sets of results are in fair agreement with each other; for example, the 
u-profile crosses the zero line at y + = 12, the spectral result being y + = 13. 
However, there are differences between the spectral and scheme A results because of 
the coarseness of the grid used in the finite-difference simulation. 

Results of the type shown in Figs. 3-7 that were obtained using a second-order 
accurate central difference scheme are presented in the Appendix. A comparison of 
the results obtained using scheme A and the central difference method shows that, 
in general, scheme A yields better results. More importantly, the scheme A results 
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FIG. 8. Mean velocity profiles normalized by wall shear velocity (scheme A; tine grid). 
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were obtained without an aliasing-error control mechanism such as a kinetic energy 
conservation principle or a method requiring Fourier decomposition techniques 
with the attendant limitations regarding grid uniformity. 

Fine-Grid, Upwind-Difference Solutions to Turbulent Channel Flow 

The coarse-grid computations with scheme A were repeated on a tine grid with 
grid dimensions of (192 x 101 x 192). This computation was performed to make 
direct comparisons with the data of Ref. [8] (which were obtained on a grid of the 
size (192 x 129 x 160)). The results presented below follow along the lines of the 
earlier presentation, and, while this exercise may appear repetitous, it does provide 
a detailed demonstration that accurate direct simulations can be performed with 
high-order accurate, upwind-biased, finite-difference schemes. 

Figure 8 shows the mean velocity distribution in the channel. The agreement with 
the experimental data and the law of the wall is good. The turbulence intensities 
normalized by the wall shear velocity are shown in wall coordinates in Fig. 9. The 
computed data are compared with experimental data as in Fig. 4. The computed 
streamwise component u,,, is in good agreement with the experimental data. The 
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FIG. 9. Root-mean-square velocity fluctuations normalized by the wall shear velocity (wall 
coordinates, scheme A; line grid). Comparison with experimental data. 
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normal and spanwise components, urms and w,,,, are in better agreement with the 
experiment than in Fig. 4. Figure 10 shows the computed v,,, profile along with the 
recent experimental data of Ref. [24] obtained using an LDV technique at a 
Reynolds number (Re,) of 178.6. The agreement between the two sets of data is 
good. The agreement between the computed u,, profile and the corresponding 
experimental data of Ref. [24] is of the same quality as in Fig. 9. 

Figure 11 shows a comparison of the turbulence intensities obtained with 
scheme A and the spectral data of Ref. [S]. All three components computed by 
scheme A are seen to be in good agreement with the spectral data. Figure 12 shows 
the computed and experimental turbulence intensities normalized by the local mean 
streamwise velocity. The agreement with experiment is better than in Fig. 5. These 
same computed intensities are compared with the spectral data of Ref. [S] in 
Fig. 13. The present data are in good agreement with the spectral data. 

The near wall behavior of the turbulence intensities and Reynolds shear stress are 
shown in Fig. 14. This figure also shows the spectral data of Ref. [S]. The quantities 
u rms and wrms are normalized with y +, u,,, with (y + )2/10, and the Reynolds shear 
stress with (y + )3/400. This figure shows the limiting linear behavior of the tangen- 
tial stresses in the near-wall region and the quadratic behavior of the normal stress 
in the region 0.5 < y + < 7.5. The u,,,, a,,,, and w,,, profiles are in good agreement 
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FIG. 12. Root-mean-square velocity fluctuations normalized by the local mean velocity (wall 
coordinates, scheme A; line grid). Comparison with experimental data. 
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FIG. 15. Reynolds shear stress and total shear stress profiles normalized by the square of the wall 
shear velocity (global coordinates, scheme A, tine grid). 
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with the data of Ref. [S]. The Reynolds shear stress values obtained with scheme A 
are slightly lower than those of Ref. [S]. 

Figure 14 shows a change in behavior in the normal stress and Reynolds shear 
stress very close to the wall. One possible reason for this anomalous behavior is 
that the finite-difference scheme is second-order accurate near the wall. In addition, 
y + = dy + for the grid point just above the wall surface and therefore a division by 
(y + )’ is identical to a division by (@ + )‘. Hence a division of the normal stress by 
(y + )’ would result in a quantity that is zeroth-order accurate near the boundary. 
A similar explanation holds true for the anamoly in the near wall behavior of the 
Reynolds shear stress. However, it should be noted that two grid points away from 
the wall the computed normal stress and Reynolds shear stress values agree well 
with the spectral data. 

Figure 15 shows the computed Reynolds shear stress and total shear stress 
profiles in global coordinates. The total stress profile should assume a straight line 
distribution when the flow reaches statistical equilibrium (shown as a chain-dashed 
line in Fig. 15). The computed total stress curve (dashed line) is seen to coincide 
with this line, indicating that the present computation has reached statistical 
equilibrium. 

Figure 16 shows vorticity fluctuations normalized by the mean shear at the wall 
as in Fig. 6. Clearly the agreement between the finite-difference and spectral data is 
good and, furthermore, better than the agreement seen in Fig. 6. The wall value of 
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the streamwise component is 0.19 and the peak in the normal component is 0.19 
(the corresponding values from Ref. [S] are 0.19 and 0.20, respectively). 

Skewness factors of the velocity fluctuations are presented in Fig. 17 as in Fig. 7. 
The scheme A results compare well with the spectral data and also show an 
improvement over the coarse grid results of Fig. 7. 

Figures 18 and 19 show energy spectra at the location y + = 5.39 obtained in the 
current calculation and those of Ref. [S]. The quantities k., and k, in these figures 
are the wavenumbers in the streamwise and spanwise directions, respectively. The 
energy densities are defined as 

L(kz) = c G&x, k;) fi*(k,, k,), k, 
where the ri values are obtained from the Fourier decomposition of the perturbation 
velocity u’, 

fi(k,, k,) = c u’(k,, kz) ecikr”e-‘k2z. 
k,,k: 

Similar expressions are used to obtain the energy spectra of the other velocity com- 
ponents. The energy densities obtained with scheme A at the higher wavenumbers 
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FIG. 20. One-dimensional streamwise energy spectra at y + = 149.23 (scheme A; tine grid). 
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FIG. 21. One-dimensional spanwise energy spectra at y + = 149.23 (scheme A; tine grid). 

E 1O-4 

are lower than those predicted by the spectral calculation of Ref. [S]. This is consis- 
tent with the high-wavenumber dissipative nature of scheme A. Neither of these 
figures indicate an accumulation of energy at the high wavenumbers; both 
streamwise and spanwise distributions show a decrease in energy density with 
increasing wavenumber. Figures 20 and 21 show energy spectra at y+ = 149.23. The 
energy spectra in these two figures exhibit the same characteristic (dissipation at 
higher wavenumbers and absence of energy accumulation) as in Figs. 18 and 19. 

In general the fine grid results are in good agreement with both the experimental 
data and the computed results of Ref. [8]. As expected the line grid results are 
closer to the experimental data and the results of Ref. [8] than the coarse grid 
results. Whereas the spectral method possesses the highest accuracy for a given 
number of grid points, the high-order accurate upwind-biased, finite-difference 
method seems to yield solutions of comparable accuracy. 

SUMMARY 

The prevalent method for direct simulations of turbulent flow is the spectral 
method. Whereas the spectral method is extremely accurate, it places restrictions on 
the type of geometry and grids that can be efficiently handled. The current study 
presents a high-order accurate finite-difference approach for calculating incom- 
pressible turbulent flow. Unlike the spectral method, the finite-difference method 
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can be used efficiently with curvilinear grids (although the method is developed for 
stretched Cartesian grids in the current study). 

The finite-difference method is evaluated using two test cases; the evolution of 
small-amplitude disturbances and fully developed turbulent channel flow. Results 
obtained for the first test case indicate the need for high-order accuracy. These 
results also serve to quantify grid requirements in order to obtain accurate results 
with finite-difference schemes of various orders of accuracy. Results obtained for the 
turbulent channel flow calculation demonstrate the need for aliasing error-control 
mechanisms when the inviscid terms in the momentum equations are evaluated 
using central differences. The calculations with central differences were discontinued 
because the aliasing error-control procedures currently available require either a 
kinetic energy conservation principle (which at present conflicts with the need for 
high-order accuracy on general grids) or a Fourier decomposition of the data 
(which has all the limitations of the spectral method). 

The high-order accurate upwind methods are naturally dissipative in nature and 
were found to control aliasing error at the expense of some accuracy. However, for 
the grid size used (192 x 101 x 192), the upwind method yielded mean flow proper- 
ties as well as first- and second-order statistics that agreed well with both 
experimental data and earlier spectral simulations. While the shortcoming of the 
upwind method (numerical dissipation) can be overcome by using additional grid 
points, the limitations of the spectral method are more fundamental in nature. The 
use of the central difference schemes depends on whether general-purpose aliasing 
error-control procedures can be found. The upwind difference code requires roughly 
the same amount of computing time per grid point for each substep in the 
Runge-Kutta scheme as the spectral simulations of Ref. [8] (without a major effort 
at code optimization). It is believed that the finite difference codes can be made 
more cost effective on a per-grid-point basis than spectral codes. The computing 
cost issue is deferred for further study. At present it appears that the high-order 
accurate upwind-biased method is a good candidate for direct simulations of 
turbulent flows associated with complex geometries. Although only one particular 
type of upwind-biased finite-difference scheme has been extensively tested in this 
study and found to yield accurate simulations of turbulent flow, other similar 
schemes with different biasing and stencils may be equally effective. 

APPENDIX 

The second-order accurate central-difference method has found use in direct and 
large-eddy simulations of turbulent flow. In order that comparisons can be made 
between the predictive capabilities of the high-order accurate upwind method and 
central difference schemes this section includes results obtained with central- 
difference schemes, for fully developed turbulent channel flow and the evolution of 
small amplitude disturbances. 

As discussed earlier, central difference schemes must be kinetic-energy conserving 
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in their formulation or have some other aliasing error control mechanism in order 
to yield stable solutions when computing turbulent flow. The method of Ref. [17] 
with the convective terms as evaluated in Ref. [ 111 is kinetic-energy conserving and 
is second-order accurate. A variant of this method (three-step Runge- Kutta/ 
Crank-Nicholson time-stepping instead of the Adams-Bashforth/Crank-Nicholson 
time-stepping of Ref. [17]) is one of the schemes used in this study. This scheme 
will be referred to as scheme B throughout this Appendix. It should be noted that 
scheme B uses the conservative form of the governing equations for its formulation. 

The nonconservative, high-order accurate scheme described in Eqs. (21) and (22), 
in which central differences are used to evaluate the viscous terms, upwind biased 
differences are used for the inviscid terms, and high-order representations are used 
for the divergence and gradient operators (and also high-order interpolation) was 
referred to as scheme A earlier in the text. Scheme C in this study is similar to 
scheme A except that the high-order accurate differences that are used to evaluate 
the inviscid terms are central differences. Scheme C, although stable on equispaced 
grids, can be unstable on stretched grids because of the appearance of the diagonal 
elements in the difference formulas as in Eq. (12) (private communication, Dr. J. L. 
Steger, NASA Ames Research Center). However, depending on the Reynolds 
number, the viscous terms of the Navier-Stokes equations may provide sufficient 
damping to stabilize the scheme. Results obtained for the evolution of small- 
amplitude disturbances with schemes B and C are presented below followed by 
results for fully developed turbulent channel flow with scheme B. 

Evolution of Small-Amplitude Disturbances 

Figure 22 shows the time variation of the energy E (Eq. (35)) in the channel for 
the growing eigensolution problem obtained using central difference schemes. The 
grid size used for all the calculations shown in Fig. 22 is (32 x 65). The finite- 
difference solutions are compared with the solution from linear theory in Fig. 22. 
The energy curve obtained with scheme B (curve 1) is much lower than the exact 
curve; that is, the calculated energy growth rate is much lower than the exact value. 
Malik et al. [21] present energy growth rate results for the same problem but 
obtained them using a spectral method in the streamwise direction and second- 
order accurate central differences in the normal direction. The ratio of energies was 
found to decrease instead of increasing as in curve 1 for the same number of grid 
points in the normal direction (an even worse situation in comparison with the 
exact curve). The more inaccurate results of Ref. [21] may be in part due to the 
distribution of grid points in the normal direction. Reference [21] uses a distribu- 
tion based on the cosine function while the current study uses a geometric progres- 
sion. The cosine distribution is inappropriate for finite-difference simulations 
because the rate of change of grid spacing can be relatively high at the walls. In 
addition to the grid sensitivity, Scheme B was also found to be sensitive to the order 
of accuracy of the interpolation scheme that is used in conjunction with the 
staggered grid, the differencing formulae used at the walls, and other parameters. 

Curve 2 of Fig. 22 represents the solution obtained with scheme C with the 
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FIG. 22. Energy growth rates for central-difference schemes. 

inviscid terms evaluated using second-order-accurate central differences. The 
growth rate in this case is much higher than the actual value. The fact that curve 
2 lies above the exact curve and curve 1 lies below the exact curve indicates that 
variants of the methods used to generate these two curves may (because of a 
fortuitous balance of the dispersive and dissipative errors) yield solutions that seem 
superior. However, such an improvement would be highly case-dependent. 

Curve 3 shows the growth rate obtained with scheme C and the inviscid terms 
evaluated with fourth-order accurate finite differences. The higher order of accuracy 
results in a solution that is very close to the exact curve over a time period 
corresponding to an energy increase of an order of magnitude. Figure 22 clearly 
indicates the need for high-order accuracy in order to accurately predict the growth 
of instabilities. It should be noted that scheme C cannot be used for direct simula- 
tions of turbulence without resorting to aliasing error-controlling mechanisms. 
Scheme C is stable for this particular test case because it is being used to resolve 
a single sine wave in the streamwise direction (the energy content of the higher 
frequencies is zero and hence the aliasing error problem does not arise in this case). 

Cease-Grid, Central-DifSerence Solutions to Turbulent Channel Flow 

The following results for fully developed turbulent channel flow were obtained 
with scheme B on a (64 x 65 x 64) mesh. The flow field was initialized using the 
computed data obtained from the coarse-grid upwind method solution reported 
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earlier. The calculations were initially carried out for approximately 10 nondimen- 
sional units of time after which statistical equilibrium was reached. The results were 
then time-averaged over a subsequent period of 10 nondimensional units of time. 

The mean velocity distribution nondimensionalized by the wall shear velocity 
is shown in Fig. 23. The agreement between the present calculation and the 
experimental results is unsatisfactory. The inaccuracies of the method seem to 
distort not only the turbulence statistics (as will be seen in later figures) but even 
mean-flow quantities such as the mass flow through the channel. The results shown 
in Fig. 23 can be directly compared with those of Fig. 3. The high-order accurate 
upwind method is seen to yield superior results. 

Figure 24 shows turbulence intensities plotted against wall coordinates as in 
Fig. 4. The computed u,,, profile is in fairly good agreement with the experimental 
data and slightly better than that obtained with the high-order accurate upwind 
method. However, the u,,, and w,,, profiles are consistently lower than the 
experimental data. The u’,,,,~ profile is better predicted by scheme A, whereas the 
V rms profile is better predicted by scheme B. However, the differences between the 
results obtained from schemes A and B are slight and hence the turbulence 
intensities do not seem to indicate the superiority of either of these methods. 

The turbulence intensities normalized by the local mean streamwise velocity are 
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shown in Fig. 25. While the comparison between the experimental and computa- 
tional data is approximately of the same quality as that obtained in the spectral 
simulation of Ref. [8] for u,,,,~ and w,,,, the computed limiting value of urrns is 
much higher than the experimental data and that reported in Ref. [8] (the present 
value is 0.46 and that of Ref. [S] is 0.36). A comparison of the results presented in 
Figs. 5 and 25 shows that overall scheme A yields superior results for the intensities 
in the near wall region. 

Vorticity fluctuations normalized by the mean shear at the wall in wall coor- 
dinates are shown in Fig. 26. These vorticity values were obtained using three-point 
central differences (consisting with the differencing stencil used for the convective 
and viscous terms). These results agree qualitatively with the spectral results of 
Ref. [8]. However, the computation with scheme B yields a spanwise component 
that is too large in the region y + < 15; the wall value being about 0.46 instead of 
the reported value of 0.36 of Ref. [S]. In contrast, the computed streamwise and 
normal components of vorticity fluctuations are much smaller than those obtained 
in Ref. [S]. The wall value of the streamwise component in Fig. 26 is 0.12 as 
opposed to a value of 0.19 in Ref. [S], and the maximum in the normal component 
is about 0.12 instead of the 0.2 reported in Ref. [S]. A comparison of these results 
with those obtained with scheme A (Fig. 6) shows that the streamwise and normal 
components obtained with the two schemes are approximately the same, whereas 
the spanwise component is computed more accurately with scheme A. 
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Figure 27 shows the computed skewness factors of the velocity fluctuations in 
global coordinates along with the results of Ref. [S]. There are several differences 
between the present computation and those of Ref. [S], a few of which are men- 
tioned below. The u-profile crosses the zero line first at y + = 35 in Fig. 27, instead 
of crossing it at y + = 13 as in Ref. [S]. The wall value of the u profile is about 2.40 
in the current study, whereas the spectral simulation of Ref. [S] yields a value of 
approximately 0.90. In general the curves of Fig. 27 compare with the data of 
Ref. [8] only in a qualitative manner. A comparison of the results of Figs. 7 and 27 
shows that the results obtained with scheme A are significantly better than those 
obtained with scheme B. 

Clearly the results obtained from scheme B on a (64 x 65 x 64) grid are 
unsatisfactory. Increasing the grid resolution would certainly improve the results. 
However, this path was not pursued, because it is not clear whether this method 
can be made high-order accurate on generalized grids without the loss of the kinetic 
energy conservation property. Instead, scheme C (which can be made high-order 
accurate on general grids) in which the inviscid terms are approximated with sixth- 
order accurate central differences was investigated and found to be unstable for the 
turbulent channel flow calculation. This unstable behavior is caused at least in part 
by aliasing errors. A scheme to remove aliasing error at each time step, based on 
Fourier decomposition techniques and the 2 rule, stabilized the method. However, 
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FIG. 27. Skewness factors (global coordinates, scheme B). 
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since series representation methods of removing aliasing error, such as the Fourier 
decomposition method, are impractical for curvilinear grids, this approach was 
discontinued. 
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